Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Influence of Atomization Quality on Mixture Formation, Combustion and Emissions in a MPI-Engine Under Cold-Start Conditions, Part II

2002-10-21
2002-01-2806
The intention of the study presented in this two part paper is to investigate the influence oalf primary mixture formation on engine running behavior, covering the areas of combustion and raw emissions. Two different concepts for primary fuel atomization were utilized and compared, the standard production injector and a flash boiling injector. The flash boiling injector is characterized by a significant reduction in droplet size and a partial direct vaporization during the injection process by preheating the fuel inside the injector. In this study special emphasis was laid on the transient process of engine start between typical cooling water temperatures of -7°C and 85°C. Various measurements and visualization techniques had been applied to investigate mixture preparation, deposition of liquid fuel on the walls, start of combustion, and in-cylinder as well as engine-out UHC emissions.
Technical Paper

Influence of the Alcohol Type and Concentration in Alcohol-Blended Fuels on the Combustion and Emission of Small Two-Stroke SI Engines

2012-10-23
2012-32-0038
The combustion processes optimization is one of the most important factors to enhancing thermal efficiency and reducing exhaust emissions of combustion engines [1; 2]. Future emission regulations for small two-stroke SI engines require that the emissions of gases causing the greenhouse effect, such as carbon dioxide, to be reduced. One possible way to reduce exhaust gas emissions from two-stroke small off-road engines (SORE) is to use biogenic fuels. Because of their nearly closed carbon dioxide circuit, the emissions of carbon dioxide decrease compared to the use of fossil fuels. Also biogenic fuels have a significant influence on the combustion process and thus the emissions of different exhaust gas components may be reduced. Besides greenhouse gases, several other exhaust gas components need to be reduced because of their toxicity to the human health. For example, aromatic hydrocarbons cause dangerous health problems, and can be reduced by using alkylate fuel.
Technical Paper

Experimental Heat Flux Analysis of an Automotive Diesel Engine in Steady-State Operation and During Warm-Up

2011-09-11
2011-24-0067
Advanced thermal management systems in passenger cars present a possibility to increase efficiency of current and future vehicles. However, a vehicle integrated thermal management of the combustion engine is essential to optimize the overall thermal system. This paper shows results of an experimental heat flux analysis of a state-of-the-art automotive diesel engine with common rail injection, map-controlled thermostat and split cooling system. Measurements on a climatic chamber engine test bench were performed to investigate heat fluxes and energy balance in steady-state operation and during engine warm-up from different engine start temperatures. The analysis includes the influence of the operating point and operating parameters like EGR rate, injection strategy and coolant temperature on the engine energy balance.
Technical Paper

Investigations of Ignition Processes Using High Frequency Ignition

2013-04-08
2013-01-1633
High frequency ignition (HFI) and conventional transistor coil ignition (TCI) were investigated with an optically accessible single-cylinder research engine to gain fundamental understanding of the chemical reactions taking place prior to the onset of combustion. Instead of generating heat in the gap of a conventional spark plug, a high frequency / high voltage electric field is employed in HFI to form chemical radicals. It is generated using a resonant circuit and sharp metallic tips placed in the combustion chamber. The setup is optimized to cause a so-called corona discharge in which highly energized channels (streamers) are created while avoiding a spark discharge. At a certain energy the number of ionized hydrocarbon molecules becomes sufficient to initiate self-sustained combustion. HFI enables engine operation with highly diluted (by air or EGR) gasoline-air mixtures or at high boost levels due to the lower voltage required.
Technical Paper

Potential of Reducing the NOX Emissions in a Spray Guided DI Gasoline Engine by Stratified Exhaust Gas Recirculation (EGR)

2006-04-03
2006-01-1261
In this paper, results of experimental and numerical investigations of stratified exhaust gas recirculation in a single-cylinder gasoline engine are presented. The engine was operated in spray guided direct injection mode. The radial exhaust gas stratification was achieved by a spatial and temporal separated intake of exhaust gas and fresh air. The spatial separation of both fluids was realized by specially shaped baffles in the inlet ports, which prevent an early mixing up to the inlet valves. The temporally separation was performed by impulse charge valves, with one for the fresh air and one for the exhaust gas. From various possible strategies for time-dependent intake of fresh air and exhaust gas, four different strategies for the exhaust gas stratification were examined.
Technical Paper

Comparison of the Emission Behaviour and Fuel Consumption of a Small Two-Stroke SI Chainsaw under Test-Bed- and Real In-Use Conditions

2012-10-23
2012-32-0070
The emission behaviour of an internal combustion engine under test-bed conditions shows differences to the emission behaviour under real in-use conditions. Because of this fact, the developers of combustion engines and the legislator are focussing on the measurement and optimization of real in-use emissions. To this day, the research, the adjustment of the carburettor and the legislation of small handheld engines is performed under test bench conditions, especially conditioned fuel pressure and temperature, as well as air temperature. Also the engines are laid out for two operation points: rated speed with full open throttle and idle speed. This test-procedure is used for all kinds of handheld off-road applications and does not consider the load profile of the different power tools. Especially applications with transient load profiles, for example chainsaws, work in more than two operating points in real use.
Technical Paper

Investigations of Spray-Induced Vortex Structures during Multiple Injections of a DISI Engine in Stratified Operation Using High-Speed-PIV

2013-04-08
2013-01-0563
Modern gasoline direct injection engines with spray-guided combustion processes require a stable and reliable fuel mixture formation as well as an optimal stratification at time of ignition. Due to the limited time for this process the temporal and spatial analysis of the in-cylinder flow field and its influence is of significant interest. The application of a piezo injector with outward opening nozzle and its capability to realize multiple injections within the compression stroke provides additional degrees of freedom for the stratified engine operation. To improve the performance of this combination a detailed knowledge of the in-cylinder flow field and its interaction with the spray propagation during and after multiple injections is essential. The flow field measurements were applied in an optical borescope single-cylinder research engine using a high-speed particle image velocimetry (HSPIV) setup.
Technical Paper

Ion Current Measurement in Diesel Engines

2004-10-25
2004-01-2922
Contemporary diesel engines are high-tech power plants that provide high torques at very good levels of efficiency. By means of modern injecting-systems such as Common-Rail Injection, combustion noise and emissions could be influenced positively as well. Diesel engine are therefore used increasingly in top-range and sports cars. Today's production ECUs have no or only very low feedback regarding the process in the combustion chamber. As long as this data is missing, the design of the maps in the ECU can only be a compromise, since production tolerances and aging processes have to be considered in advance. Disturbances in the combustion process may not be detected at all. If more knowledge about the course of combustion is provided, especially the start of combustion (SOC), various operating parameters, such as the pilot injection quantity or the beginning of current feed to the injector, could be adjusted more precisely and individually for every cylinder.
Technical Paper

Development and Testing of a Diesel Particulate Filter with an Electrical Regeneration Starting Module

2005-10-24
2005-01-3703
Different particulate filter systems with an electrical heating for starting the filter regeneration were designed and tested to evaluate the parameters important for a successful filter and heating device layout. These results led to a new filter system with an improved electrical heating module. Particular emphasis was put on a modular design which allows a separate optimization of the different system parts with regard to function, durability and costs. In this paper the different development steps are presented. Experimental results show the performance and limitations for electrically heated particulate traps. The analysis of the experiments was done on the one hand by using data such as temperatures, pressures and exhaust gas composition during the regeneration. On the other hand the assessment of the regeneration rate was done by weighing the filter and optically with non-destructive and partly destructive methods.
Technical Paper

A New Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in SI Engines

2005-10-24
2005-01-3688
Engines with gasoline direct injection promise an increase in efficiency mainly due to the overall lean mixture and reduced pumping losses at part load. But the near stoichiometric combustion of the stratified mixture with high combustion temperature leads to high NOx emissions. The need for expensive lean NOx catalysts in combination with complex operation strategies may reduce the advantages in efficiency significantly. The Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. The mainly homogeneous lean mixture leads to low combustion temperatures and subsequently to low NOx emissions. By additional EGR a further reduction of the combustion temperature is achievable. The BPI concept is realized by a prechamber spark plug and a piston bowl. The main feature of the concept is its dual injection strategy.
Technical Paper

A Study of the In-Nozzle Flow Characteristic of Valve Covered Orifice Nozzles for Gasoline Direct Injection

2005-10-24
2005-01-3684
For spark ignition engines, the most effective way to reduce the overall fuel consumption and CO2 emissions respectively is the implementation of gasoline direct injection technology. In comparison to the current wall and air guided systems, the direct injection system of the second generation - the spray guided DI- is the most promising one with respect to fuel economy and emission. In order to exploit its full potential, a thorough combustion process development regarding injector and spark plug design and their positioning within the combustion chamber is essential. Especially multihole injectors offer many degrees of freedom with regard to the nozzle shape and spray pattern. To reduce the development work and costs necessary to identify the ideal nozzle characteristic and spray pattern, reliable CFD models are necessary.
Technical Paper

Investigations on Soot Emission Behavior of A Common-Rail Diesel Engine during Steady and Non-Steady Operating Conditions by Means of Several Measuring Techniques

2005-05-11
2005-01-2154
In this work the influence of various engine load changes with different engine speeds on the soot particle concentrations and properties was investigated because these operating modes are well known for short but high soot emissions. To derive specific information on emission behavior of particle matters tests were carried out with the Two-Color-Method and the so called RAYLIX technique in a four-cylinder CR-Diesel engine. The Two-Color-Method (2CM) gives crank angle resolved information about soot formation and oxidation processes inside the combustion chamber of a single cylinder. The RAYLIX technique is a combination of Rayleigh-scattering, Laser-Induced-Incandescence (LII) and extinction measurements which enable simultaneous measurements of temporally and spatially resolved soot concentration, mean primary particle radii and number densities in the exhaust gas manifold of the same cylinder investigated by the Two-Color-Method.
Technical Paper

Application of a New Optical Fiber Technique for Flame Propagation Diagnostics in IC Engines

1988-10-01
881637
A multi-optical fiber measurement technique is presented which can determine spatial flame propagation with a high temporal resolution. With this measurement technique it is possible to investigate the combustion process in both Diesel and SI engines. The measurement technique can also be applied for the detection of flame propagation in research engines and in actual production engines for performing analysis of special problems such as knocking combustion, combustion chamber design studies which concern flame propagation, the influence of engine parameters on flame propagation, ignition and inflammability behavior. The new measurement technique is discussed in detail and the application of optical measuring points in the combustion chamber walls is demonstrated. A special non-contacting optical transmission system has been developed for the observation of flame propagation.
Technical Paper

Influence of Mixture Preparation on Combustion and Emissions Inside an SI Engine by Means of Visualization, PIV and IR Thermography During Cold Operating Conditions

1999-10-25
1999-01-3644
The focus of this work was to determine the influence of spray targeting on temperature distributions, combustion progress and unburned hydrocarbon (HC) emissions at cold operating conditions, and to show the capability of model and full engine tests adapted for different measurement techniques. A comprehensive study applying endoscopic visualization, infrared thermography, combustion and emission measurements was carried out in a 4-stroke 4-cylinder 16-valve production engine with intake port injection during different engine operating conditions including injection angle and timing. In addition 2D visualization and PIV measurements were performed in a back-to-back model test section with good optical access to the intake manifold and the combustion chamber. The measurements in both set ups were in good agreement and show that model tests could lead to useful findings for a real engine.
Technical Paper

Investigation of the Bowl-Prechamber-Ignition (BPI) Concept in a Direct Injection Gasoline Engine at Part Load

1999-10-25
1999-01-3658
In this work a new concept for GDI engines is presented. Concerning a stable ignition a main goal of the so called Bowl-Pre-chamber-Ignition (BPI) process is to reduce the influence of varying flow and spray effects. The characteristic signs of the concept are the dual direct injection, a centrally arranged piston bowl and the special pre-chamber spark plug, that partly dips into the bowl at TDC. During that process most fuel is injected early (intake stroke) into the intake manifold or directly into the cylinder to form a homogeneous pre-mixture. Later in the compression stroke, only a small amount of fuel is injected into the piston bowl. So formed locally stratified charge mixture is transported by the piston bowl to the pre-chamber-spark plug, the pre-chamber dips into the bowl and the mixture flows directly to the spark plug electrode. The result is a very stable lean combustion.
Technical Paper

Novel Rankine Cycle for Hybrid Vehicles

2018-09-10
2018-01-1711
The European Union (EU) has defined legally-binding targets for the fleet of new cars allowing 95 grams CO2 per kilometer in 2021. It is already under discussion to reduce average emissions of the EU car fleet by further 15% in 2025 and again by 30% in 2030 compared to 2021 goal. Therefore, improvement of fuel economy is becoming one of the most important issues for the car manufacturers. Today’s conventional car powertrain systems are reaching their technical limits and will not be able to meet future fuel economy targets without further development of additional measures. This paper presents the analysis of a Rankine cycle unit applied to improve the overall efficiency of a hybrid electric vehicle (HEV). The authors propose a new concept for recovering a considerable part of exhaust waste heat from an HEV with spark ignition internal combustion engine (ICE) by applying a bottoming Rankine cycle with a Ruths storage tank.
Technical Paper

Application of Multifiber Optics in Handheld Power Tools with High Speed Two-Stroke Gasoline Engines

2006-11-13
2006-32-0060
When developing effective exhaust emission reduction measures, a better understanding of the complex working cycle in crankcase scavenged two-stroke gasoline engines. However, in a two-stroke gasoline engine detailed measurement and analysis of combustion data requires significantly more effort, when compared to a lower speed four-stroke engine. Particularly demanding are the requirements regarding the high speed (>10,000 rpm) which inevitably goes along with heavy vibrations and high temperatures of the air cooled cylinders. Another major challenge to the measuring equipment is the increased cleaning demand of the optical sensor surface due to the two-stroke gasoline mixture. In addition, the measuring equipment has to be adapted to the small size engines. Therefore, only a fiber optical approach can deliver insight into the cylinder for analyzing the combustion performance.
Technical Paper

A New Approach for Three-Dimensional High-Speed Combustion Diagnostics in Internal Combustion Engines

2006-10-16
2006-01-3315
This paper introduces a new measuring and analyzing method for the investigation of the spatial flame propagation in IC engines. Three optical high-speed measuring devices are connected and synchronized in order to detect the flame radiation from different perspectives via fiberoptical endoscopes. The resulting two-dimensional images provide a starting basis for the subsequent reconstruction of the three-dimensional flame geometry. The reconstruction is carried out by a newly developed software tool. The capability of the new methodology has been proven in a first test series. A one-cylinder SI engine with direct-injection is operated in both homogeneous and spray-guided stratified injection mode. Intake flow conditions and air/fuel ratio are varied in order to investigate the effects on flame spread. The volumetric flame developments are analyzed as well as the location of the combustion center in absolute coordinates.
Technical Paper

Combustion Control with the Optical Fibre Fitted Production Spark Plug

1998-02-01
980139
Optical measurement technique became more and more common for the last few years. Especially optical fibre technique is often used to detect flame propagation. With optical sensors the ignition process can be investigated with high temporal and spatial resolution. An in-cylinder optical sensor has been developed and tested to analyze the ignition of mixture and luminous emission of burning gas. The sensor consists of eight optical probes fitted in a conventional spark plug. The results show good correlation between measured luminosity and combustion parameters such as load, engine speed, ignition timing and air-fuel mixture ratio. A correlation between development of light intensity and pressure was found. For evaluation of light signals different analysis methods are presented. Furthermore it is shown that the luminosity of the flame can be used to control the combustion process.
Technical Paper

67 Analysis of Mixture Conditions in a Small Two Stroke Engine Using a Gas Sampling Valve

2002-10-29
2002-32-1836
The quality of mixture formation and the combustion process is of significant importance for reducing the hydrocarbon emissions of small two stroke engines. The scope of this work was to investigate the mixture conditions after the exhaust closes and after the end of combustion depending on various engine operating points. For this experimental investigation a Gas Sampling Valve (GSV) was combined with a flame ionisation detector (FID) and a CO2-analyser. Using this technique, it was possible to measure the hydrocarbon concentration after end of combustion. Furthermore the local residual gas concentration after exhaust closes was determined. To allow for a comparison of the experimental results with calculations with CFD codes, in cylinder pressure measurement and exhaust gas measurements are done additionally.
X